Two mild methods for synthesis of α , β -unsaturated cyanoesters Ming Zhang^{*}, Ai-Qin Zhang^b and Zhi-Hong Deng^a

^aCollege of Chemistry, Jiangxi Normal University, Nanchang, Jiangxi 330027, P R China ^bDepartment of Environmental and Chemical Engineering, Nanchang Institute of Aeronautical Technology, Nanchang, Jiangxi 330034, P R China

 α , β –Unsaturated cyanoesters can be prepared by reaction of aldehydes and ethyl cyanoacetate catalysed by CaCl₂/ Et₃N or NaOH at room temperature .

Keywords: α , β -unsaturated cyanoesters , catalysed reaction

 α,β -Unsaturated cyanoesters which are important intermediates for the synthesis of heterocycles, are usually prepared by the condensation of cyanoacetic esters with aldehydes or ketones in the Knoevenagel reaction. Usually a base is necessary as a catalyst and the water which is formed has to be removed by azeotropic distillation.¹ The procedure is troublesome. ZnCl₂ was used as a catalyst for preparation of α , β -unsaturated cyanoesters,² but at 100°C. Ammonium acetate³ and urotropine⁴ efficiently catalysed the Knoevenagel condensation under microwave irradiation. Water is being used as a solvent in more reactions in the context of "green" chemistry. Cetyltrimethylammonium bromide (CTMAB) was found to catalyse the preparation of α,β -unsaturated cyanoesters in water,⁵ but these reactions took a long time (12h), and it was difficult to filter the products due to emulsification of CTMAB. The precipitate had to stand overnight before the products could be filtered. Interestingly, α , β -unsaturated cyanoesters were prepared by the reaction of bromocyanoacetic ester with aldehydes promoted by tri-n-butylarsine under neutral condition.⁶ This reaction must be under nitrogen, and products were separated by chromatography. Solid phase Knoevenagel catalysts were employed as heterogeneous catalysts under reflux in ethanol.^{7,8} Here we report two new systems for the preparation of α,β -unsaturated cyanoesters which possess several advantages compared to literature methods: (1) They occur at room temperature, and do not need heating or microwave irradiation.^{1-4,6,7,8} (2) The reactions time is short.^{5,6} (3) Reagents are not sensitive to moisture or oxygen, and reactions proceed in air.⁶ (4) The products do not need to be seperated by chromatography and filtration is easy.^{5,6} This communication reports the results of the reaction of ethyl cyanoacetate with a variety of aromatic aldehydes in EtOH in the presence of CaCl₂/Et₃N or NaOH as catalyst at room temperature. Only the E isomers were produced.

We found that reaction of benzaldehyde with ethyl cyanoacetate is very easy. Reaction of equimolar benzaldehyde and ethyl cyanoacetate catalysed by 10 mol % Et₃N in ethanol at room temperature for 1/2 hour can give excellent yield (89%) of the corresponding condensation product. But p-methoxybenzaldehyde gave only a trace of the product under the same condition. In order to seek general methods for synthesis of α , β –unsaturated cyanoesters from more aromatic aldehydes, we adopt as the general reagent CaCl₂/Et₃N as

ArCHO +
$$CH_2$$
 CN $CaCl_2 / Et_3N \text{ or NaOH}$ Ar H $COOEt$ $COOEt$

Scheme 1 Reaction of aldehydes and ethyl cyanoacetate.

Table 1	Results for	reactions	catalysed	hv	CaCl _a /	Et _o N
	nesuits ioi	reactions	cataryseu	DV.		

Entry	Ar (CHO)	Yield/%	M.p	M.p./°C	
			Obs.	Lit.	
1	p-CH₃OC ₆ H₄	90	81–82	80–84 ⁹	
2	C ₆ H ₅	90	50–51	50–51 ⁹	
3	$p - (CH_3)_2 NC_6 H_4$	92	124–125	124–126 ¹²	
4	o-CI C ₆ H ₄	93	52–53	51–52 ¹¹	
5	2-furfuryl	94	92–93	92–93 ⁹	
6	p-HO C ₆ H ₄	87	172–173	171–172 ¹⁰	

ArCHO (10 mmol), ethyl cyanoacetate (10 mmol), $CaCl_2$ (0.5 mmol), $Et_3N(1 mmol)$, Ethanol 20 ml, rt, 1/2h.

Table 2 Results for reactions catalysed by NaOH

Entry	Ar	Yield(%)	M.	M.p./°C	
			Obs.	Lit.	
1	p-CH3OC6H4	91	80–81	80–84 ⁹	
2	C6H5	90	50–51	50–51 ⁹	
3	p-(CH3)2NC6H4	92	124–125	124–126 ¹²	
4	o-CI C6H4	92	51–52	51–52 ¹¹	
5	2-furfuryl	93	92–93	92–93 ⁹	
6	p-HO C ₆ H ₄	88	171–172	171–172 ¹⁰	

ArCHO (10 mmol), ethyl cyanoacetate (10 mmol), NaOH (1 mmol), EtOH 20 ml, rt, 1/2h.

the catalyst. The desired results were obtained according to general procedure A (Table 1).

With the stronger base sodium hydroxide as a catalyst instead of triethylamine, we found reactions can proceed smoothly without $CaCl_2$, and excellent results were obtained according to general procedure B (Table 2).

Experimental

General procedure A: To a mixture of the aldehyde (10 mmol) and ethyl cyanoacetate (10 mmol) in ethanol (10 ml) (95%), $CaCl_2$ (0.5 mmol) and Et_3N (1 mmol) were added, and stirred for 1/2 h at room temperature, water (100 ml) was added, and the mixture stirred for a moment then filtered. The crude product was recrystallised from ethanol.

General procedure B: To a mixture of the aldehyde (10 mmol) and of ethyl cynaoacetate (10 mmol) in ethanol (10 ml) (95%), NaOH (1 mmol)was added, and stirred for 1/2 h at room temperature, water (100ml) was added, stirred for a moment then filtered. It was neutralised by concentrated hydrochloric acid before filtration for entry 6 in Table 2. The crude product was recrystallised from ethanol.

All the products gave mps and spectral data consistent with the reported ones. See Tables 1 and 2. $^{9\mathchar`-12}$

Received 2 October 2004; accepted 1 November 2004 Paper 04/2793

References

- 1 G. Jones, Org. React., 1967, 15, 238
- 2 P. Shanthan Rao and R.V. Venkataratnam, *Tetrahedron Lett.*, 1991, **32**, 5821.

^{*} Correspondent. E-mail: zmchem@sina.com

70 JOURNAL OF CHEMICAL RESEARCH 2005

- 3 S. Balalaie and N. Nemati, Synth. Commun., 2000, 30, 869.
- 4 Y. Peng, G. Song and X. Qian, J. Chem. Res., (s), 2001, 188.
- 5 S. Wang, Z. Ren, W. Cao and W. Tong, *Synth. Commun.*, 2001, **31**, 673.
- 6 Y. Shen and B. Yang, Synth. Commun. 1989, 19 (17), 3069
- 7 M. Zhang, A.Q. Zhang and X.H. Tang, *Chin. J. Org. Chem.*, 2004, **24**, 1106.
- 8 J. Simpson, D.L. Rathbone and D.C. Billington, *Tetrahedron Lett.*, 1999, **40**, 7031.
- 9 J.A. Cabello, J.M. Campelo, A. Garcia, D. Luna and J.M. Marinas, J. Org. Chem., 1984, 49, 5195.
- 10 Y. Heinosuke and S.M. Hiro, Bull. Chem. Soc. Jpn., 1966, 39, 1754.
- 11 N. Marguerite and I.B. Johns, J. Am. Chem. Soc., 1940, 62, 2450.
- 12 G.Y. Dai, D.Q. Shi and L.H. Zhou, *Chemical Reagents*, 1996, 18, 39 (in Chinese).